If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2+80x+32=0
a = 42; b = 80; c = +32;
Δ = b2-4ac
Δ = 802-4·42·32
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-32}{2*42}=\frac{-112}{84} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+32}{2*42}=\frac{-48}{84} =-4/7 $
| -228+2x=78-15x | | x/8-3=15/16 | | -12=h/4+-11 | | (5x+9)(8x-30)=180 | | 0.65x+0.35x=6.6 | | d+8d=18 | | (3)=8n+2 | | 211=37-y | | 8(2^t)=128 | | -15=-8z-+1 | | -0.67x+0.37x=6.9 | | 12/x=4(x-1) | | 8u-2u=48 | | 20h-14h=6 | | 18+2v=60 | | 9-5k=-3-7k-10 | | -2(c+3)=c-13 | | 5y=(7y-34() | | 7x-34=2x+1 | | 159-6x=11x-113 | | C=37.56+0.50x | | 110=37.62+0.50x | | 5x+6=7x+5-2 | | x+434=562 | | 126=-6-4(7x+11) | | 6h-15=7h | | 13h+-5h−6h−-7h+h=-20 | | 100=37.62+0.50x | | 8m-4=140 | | 8+n=n+7 | | 140=-6x-4(x-15) | | 90=2x+5+x |